まとめて。

今日は歯医者に行きました。これで治療は終わりです。
と思ったらもう1本初期のがあるよ。とか言われました。来週も行くことに。
早く終わったんだし、ついでにやってくれよ!とか思っても言えない小心者(ぅ
しかし何故に今頃になって虫歯がこんなに。
生活習慣も変わってないし歯もちゃんと磨いてるのにね。
くっ!誰の陰謀だ!!




以下はメモだから気にしないで〜


z=x_1cos(\theta)+x_2cos(90-\theta)=x_1cos(\theta)+x_2sin(\theta)


z=a_1x_1+a_2x_2


{a_1}^2+{a_2}^2=1


z=a_1x_1+a_2x_2


x_1=\frac{1}{n}\bigsum_{i=1}^{n}x_{1i}


 x_2 = \frac{1}{n} \bigsum_{i=1}^{n}x_{2i}


s_{11} = \frac{1}{n} \bigsum_{i=1}^{n} ({x_{1i} - \bar{x_{1}})^2


s_{22} = \frac{1}{n} \bigsum_{i=1}^{n} ({x_{2i} - \bar{x_{2}})^2


s_{12} = s_{21} =  \frac{1}{n} \bigsum_{i=1}^{n} ({x_{1i} - \bar{x_{1}})({x_{2i} - \bar{x_{2}})



V(z) = \frac{1}{n} \bigsum_{i=1}^{n} (z_{1i}-\bar{z_1})^2

= \frac{1}{n} \bigsum_{i=1}^{n} (a_1x_{1i}+a_2x_{2i}-a_1\bar{x_1}-a_2\bar{x_2}^2)

= \frac{1}{n} \bigsum_{i=1}^{n}(a_1(x_{1i}-\bar{x_1})+a_2(x_{2i}-\bar{x_2}))^2

= \frac{1}{n} \bigsum_{i=1}^{n} ({a_1}^2(x_{1i}-\bar{x_1})^2+2a_1a_2(s_{1i}-\bar{x_1})(x_{2i}-\bar{x_2})+{a_2}^2(x_{2i}-\bar{x_2}))^2

= {a_1}^2s_{11}+2a_1a_2s_{12}+{a_2}^2s_{22}




f(a_1,a_2)= {a_1}^2s_{11}+2a_1a_2s_{12}+{a_2}^2s_{22}

g(a_1,a_2)={a_1}^2+{a_2}^2-1=0



とおき、ラグランジュの未定乗数法を用いる。


F(a_1,a_2,{\lambda})=f(a_1,a_2)-{\lambda}g(a_1,a_2)

={a_1}^2s_{11}+2a_1a_2s_{12}+{a_2}^2s_{22}-{\lambda}{a_1}^2+{a_2}^2-1

F(a_1,a_2,{\lambda}) をa1,a2で偏微分したものを0とおくことにより分散V(z)を最大にするa1,a2 を求める。


\array{rcl$\frac{{\partial}F}{{\partial}a_1} = 2a_1s_{11}+2a_2s_{12}-2{\lambda}a_1=0\\{\frac{{\partial}F}{{\partial}a_2} = 2a_1s_{11}+2a_2s_{12}-2{\lambda}a_2=0\\{\frac{{\partial}F}{{\partial}{\lambda}} = -{a_1}^2-{a_2}^2+1=0}



以上より


(s_{11}-{\lambda})a_1+s_{12}a_2=0

s_{21}a_2+(s_{22}-{\lambda})a_2=0



これを行列で表すと


\(\array{\\{s_{11}-{\lambda}}\quad{s_{12}}\\{s_{21}}\quad{\;\;s_{22}-{\lambda}}}\)\(\array{a_1}\\{a_2}\)=\(\array{0}\\{0}\)


a_1=\frac{\begin{vmatrix}\0&s_{12}\\0&s_{22}-{\lambda}\\ \end{vmatrix}}{\begin{vmatrix}\ s_{11}-{\lambda}&s_{12}\\s_{21}&s_{22}-{\lambda}\\ \end{vmatrix}}



a_1について整理るすと以上のようになり、a_1=0 になるときは
\begin{vmatrix}\ s_{11}-{\lambda}&s_{12}\\s_{21}&s_{22}-{\lambda}\\ \end{vmatrix}\neq~0
の場合のみになる。よって、
(a_1,a_2)=(0,0)
以外の解を持つためにはこの行列値が0でなければならないので、これをλについて解くと


\begin{vmatrix}\ s_{11}-{\lambda}&s_{12}\\s_{21}&s_{22}-{\lambda}\\ \end{vmatrix}=(s_{11}-{\lambda})(s_{22}-{\lambda})-{s_{12}}^2


=s_{11}s_{12}-{\lambda}(s_{11}+s_{12})+{\lambda}^2-{s_{12}}^2


={\lambda}^2-{\lambda}(s_{11}+s_{12})+s_{11}s_{12}-{s_{12}}^2


=0


{\lambda}=\frac{(s_{11}+s_{12})\pm\sqrt{(s_{11}+s_{12})^2-4(s_{11}s_{12}-{s_{12}}^2)}}{2}


=\frac{(s_{11}+s_{12})\pm\sqrt{{s_{11}}^2+2s_{11}s_{12}+{s_{12}}^2-4s_{11}s_{12}+4{s_{12}}^2}}{2}


=\frac{(s_{11}+s_{12})\pm\sqrt{{s_{11}}^2-2s_{11}s_{12}+{s_{12}}^2+4{s_{12}}^2}}{2}


=\frac{(s_{11}+s_{12})\pm\sqrt{(s_{11}-s_{12})^2+4{s_{12}}^2}}{2}



\bar{x}

{\partial}

{\lambda}


(s_{11}-{\lambda})a_1+s_{12}a_2=0

(s_{11}-{\lambda})a_1=-s_{12}a_2

-\frac{s_{11}-{\lambda}}{s_{12}}=\frac{a_2}{a_1}

a_2=-\frac{s_{11}-{\lambda}}{s_{12}a_1}




{a_1}^2+\frac{({\lambda}-s_{11})^2}{{s_{12}}^2}{a_1}^2=1

a_1=\frac{a_1}{\sqrt{{s_{12}}^2+({\lambda}-s_{11})^2}}

a_2=\frac{{\lambda}-s_{11}}{\sqrt{{s_{12}}^2+({\lambda}-s_{11})^2}}




s_{11}a_1+s_{12}a_2={\lambda}a_1

s_{12}a_1+s_{22}a_2={\lambda}a_2



s_{11}{a_1}^2+2s_{12}a_1a_2+s_{22}{a_2}^2={\lambda}({a_1}^2+{a_2}^2)

V(z)={\lambda}

V=\(\array{\\{s_{11}}\quad{s_{12}}\\{s_{12}}\quad{s_{11}}}\)

V=\(\array{\\{a_1}\\{a_2}}\)




a_1=\frac{{\lambda}-s_{11}}{s_{12}}a_2

a_2=\frac{s_{12}}{{\lambda}-s_{11}}a_1
これをそれぞれ(2)に代入すると


{a_1}^2+\frac{({\lambda}-s_{11})^2}{{s_{12}}}{a_1}^2=1

\frac{({\lambda}-s_{11})^2+{s_{12}}^2}{{s_{12}}^2}=\frac{1}{{a_1}^2}

{a_1}^2=\frac{{s_{12}}^2}{({\lambda}-s_{11})^2+{s_{12}}^2}

a_1=\frac{s_{12}}{\sqrt{({\lambda}-s_{11})^2+{s_{12}}^2}}


\frac{{s_{12}}}{({\lambda}-s_{11})^2}{a_2}^2+{a_2}^2=1

\frac{{s_{12}}+({\lambda}-s_{11})^2}{({\lambda}-s_{11})^2}=\frac{1}{{a_2}^2}

{{a_2}^2}=\frac{({\lambda}-s_{11})^2}{{s_{12}}+({\lambda}-s_{11})^2}

{{a_2}}=\frac{{\lambda}-s_{11}}{\sqrt{{s_{12}}+({\lambda}-s_{11})^2}}


s_{11}{a_1}^2+2s_{12}a_1a_2+s_{22}{a_2}^2={\lambda}({a_1}^2+{a_2}^2)

よって(1)の分散V(z)と(2)より

V(z)={\lambda}


[tex:]

[tex:]

[tex:]

[tex:]

[tex:]